
FE Simulation of Honeycomb Core 
Sandwich Panels for the Body
Lightweight honeycomb sandwich structures have been increasingly employed in the automotive 
industry: from parcel-shelf to load-floor applications. There can be an infinite variety of possible 
solutions adopted for these parts depending on the choice of the core geometries and of the materi-
als. In the design phase an efficient prediction tool is needed – Rieter has developed a mathematical 
model based on a multi-scale asymptotic technique.
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1  Introduction

Two main factors drive the progressive 
introduction of sandwich structures in 
the automotive industry: value of stiff-
ness to weight ratio and, not surprising-
ly, material and processing cost. The 
problem of weight reduction, common 
to all forms of transportation for reasons 
of fuel economy and driving perform-
ance, demands solutions that maximize 
structural stiffness with less material. In 
the automotive industry, sandwiches 
have already made their first steps in re-
placing conventional solutions for both 
non-structural components – such as 
parcel shelf or load floor panels – in most 
of the automotive market, and with 
structural function in high performance 
sports models.

Certainly, the versatility of composite 
materials with cell structure, Figure 1, is 
revolutionizing the architecture of 
sandwich structures, and designs with 
multiple choices of periodic spatial core 
arrangements are becoming a reality. 
Based on demands of mechanical behav-
iour, cost, weight and acoustic perform-
ance, the design can be rationally opti-
mized when certain theoretical guid-
ance is available; however the availabil-
ity of analytical solutions appears to be 
lagging. It must also be realized that 
even with current high-speed comput-
ers, it is still difficult to tackle a full de-
scription of periodic sandwich struc-
tures by employing Finite Elements 
commercial codes: the number of de-
grees of freedom necessary to build up a 
detailed model of the desired panel 
make its simulation very expensive (of 

the static or dynamic behaviour) espe-
cially if these models have to be embed-
ded for example inside a complete vehi-
cle model.

2  Proposed Procedure

The method essentially proposed here 
consists of a homogenization process 
and goes through the following steps: 
identifying the different scales character-
izing the physical problem; studying the 
influence of each scale on the others; de-
veloping a technique to model this influ-
ence. Once the homogenized process is 
developed, it is possible to analyze the 
dynamics of the largest scale without 
considering the other scales.

Rieter has succeeded in extending 
the validity of the two-scales perturba-
tion asymptotic technique, developed in 
recent literature [1], to determine the 
constitutive dynamic equations of the 
equivalent homogenous medium repre-
senting the honeycomb cellular struc-
ture: the outcome of this process is the 
determination, for any honeycomb core 
geometry, of all the nine compliance 
matrix terms of the equivalent homog-
enous orthotropic material represent-
ing the considered honeycomb cellular 
structure.

The derivations here described start 
from the general partial differential 
equations that represent the dynamic be-
haviour of the honeycomb structure 
(Cauchy’s equations) and re-formulate 
them in a weak form, which is as a vari-
ational problem. This type of approach is 
made necessary by the fact that, in any 
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Figure 1: Comparison (FE modelling) of honeycomb validation model (left) to homogenized 
model (right) of a sandwich structure
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honeycomb structure, the transition 
from the cell wall to the air around it de-
termines discontinuities in the local den-
sity and in the local elasticity tensor of 
the honeycomb structure. Therefore one 
considers a 3D-periodic body occupying 
a bounded region Ω in the Euclidean R3 
space, defined by coordinates x1, x2 und 
x3. Assuming a linear behaviour, the 
equations that describe the dynamics of 
the body can be written as follows:

 ρ   
Dvi ___ Dt   –   ∂ ___ ∂xj

    ( Cijkl   
∂ul

 ___ ∂xk
   )  = ρfi  in Ω Eq. (1)

Here u is the displacement field, v is the 
velocity field,   D __ Dt   is the material deriva-
tive, ρ is the density, Cijkl are the terms of 
the elastic tensor, and fi are the terms 
relative to the mass loads. For a linear 
elastic body the tensor Cijkl must be posi-
tive definite and must satisfy the follow-
ing symmetry conditions:

 Cijkl = Cjikl = Cijlk = Cklij Eq. (2)

For any periodic structure the elasticity 
tensor Cijkl and the density ρ will be peri-
odic functions of the spatial coordinates.

As a consequence of this, it will be 
possible to isolate a unit cell of the global 
structure, intended as the region that 
covers a single spatial period of the elas-
ticity tensor and of the density. By defin-
ing, on this domain, local coordinates 
(micro-scale coordinates) (y1, y2, y3) one 
has u = u (x1, x2, x3, y1, y2, y3, t), v = v (x1, x2, 
x3, y1, y2, y3, t) and C = C (y1, y2, y3). The 
micro-scale coordinates are able to de-
scribe the small oscillating perturbations 
of the solution, while the macro-scale co-
ordinates are able to describe the average 
spatial trend of the solution.

Using the periodicity of the perturba-
tions and the Green theorem, two of the 
endless variational equations are extract-
ed: the first represents the micro-scale 

equation while the second is the macro-
scale equation.
The macro-scale equation provides the 
solution of the equivalent material iden-
tification, since it gives the definition of 
the averaged density and stiffness tensor, 
which are the equivalent properties 
needed to be identified. Indeed analyz-
ing the expression of the average stiff-
ness tensor, it can be seen that together 
with known properties such as the vol-
ume of the 3D periodic cell geometry, 
and the stiffness tensor of the material 
constituting the honeycomb, the expres-
sion presents a third order tensor  χ q  

kl , 
which is unknown.

The identification of this unknown 
micro-scale tensor comes from the varia-
tional equation system expressing the 
micro-scale problem. This equation sys-
tem can be solved by means of numerical 
computation on the cell domain. And 
thanks to the symmetry of the equiva-
lent elastic tensor only the solution of 
ten terms of the unknown micro-scale 
tensor  χ q  

kl  (y1, y2, y3) have to be performed. 
Once all the  χ q  

kl  have been obtained by 
numerical solution on the cell domain, 
for the computation of the equivalent 
elastic tensor we can directly apply the 
macro-scale dynamic equation already 
obtained from the endless variational 
equations deriving from Eq. (1).

3  Numerical/Numerical Validation

To confirm the results of the proposed 
formulation, we compared, for the most 
common honeycomb core configura-
tions, a detailed FE model versus our ho-
mogenized approach. With this type of 
validation, since no problem regarding 
the material and geometry uncertainty 
arises, between the compared models, it 
is possible to better appreciate the accu-
racy of the proposed approach. Here the 

results obtained for a typical honeycomb 
core structure with hexagonal cell (with 
4 mm side length and 8 mm width) are 
considered. In particular considering a 
honeycomb sandwich plate (1000 mm × 
900 mm) with 1 mm aluminium skins, 
and 2 mm core height made with poly-
propylene.

The validation of the multi-scale tech-
nique is carried out employing the com-
mercial FE code M.S.C. Nastran. The vali-
dation process consists in the compari-
son between the dynamic behaviours of 
two different finite element models of a 
sandwich structure with honeycomb 
core, Figure 1:
–  the validation model, where the thin-

walled core of the selected honeycomb 
is described with a fine mesh made of 
linear plate elements (CQUAD4), to 
which the polypropylene material 
properties attributed. This model end-
ed up having nearly 218.000 nodes. 

–  the homogenized model, where the 
volume bounding the core layer has 
been meshed with 3D elements. This 
involved a much lower modelling ef-
fort compared to the validation mod-
el, leading to an FE description with 
only approximately 5500 nodes. To 
these brick elements (CHEXA) the or-
thotropic material (MAT 9) behaviour 
with the equivalent homogeneous 
core properties have been applied.

Both the FE models present two skins, 
which are simulated via isotropic linear 
plate elements (CQUAD4). A first com-
parison between the two mentioned nu-
merical models was performed with re-
spect to a static solution, loading the 
plate with a uniform load of 10 N on a 
central square area, and with simple 
support condition on two opposite pan-
el sides, on the skin opposite to the load. 
The solution of the validation model 
took 19 min while the solution of the 
homogenized model took approximate-

Figure 2: Static deformation comparison 
(validation model vs. homogenized model)
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ly 1.5 min. The results show that not 
only is the deformation profile of the 
full model reproduced correctly by the 
homogenous one, but the local defor-
mation is also correctly represented 
leading to a maximum 3.5 % difference 
in the displacement field of these two 
models, Figure 2.

A further comparison between the 
two models involved the forced response 
of the sandwich panel, when exciting 
the sandwich panel, in free-free condi-
tion, on one point with a force normal to 
the skin surface. The average mobility 
frequency response function is per-

formed over the simulated FRFs, by sum-
ming up the contributions of all the 
nodes belonging to the skin opposite to 
the one where the loads are applied. Sev-
eral excitation points have been consid-
ered. Figure 3 shows the results where one 
of them is applied.

Also in this behaviour comparison, 
despite the difference for both the mod-
elling effort and solution time (approxi-
mately 6 h for the validation model and 
43 min for the homogenized model), the 
proposed homogenized model is able to 
provide a response, which is pretty simi-
lar to the one of the validation model.

4  Numerical/Experimental Validation

Similar results as mentioned in Chapter 3 
have been obtained with numerical vali-
dation of other core shapes, and with 
numerical and experimental validation 
of flat sandwich plates [2]. Here for brev-
ity the application of the proposed ho-
mogenization method to the simulation 
of a load floor panel in the trunk will be 
reported, Figure 4.

This load floor is composed of sand-
wich carrier material, named RHOC 
 (Rieter Honeycomb), which is made up 
of the following starting layers: two skin 
layers made out of EAC material (glass 
fibre based material), a polypropylene 
tubular honeycomb core (17 mm thick-
ness), and on top a non woven carpet. In 
the production process, this starting 
pileup undergoes a hot moulding proc-
ess, which delivers the final shape: as a 
result of it the part presents several are-
as where the core has been squeezed be-
tween the skins, but also many local 
skin curvatures, so that the component 
presents a non uniform thickness. Con-
cerning the modelling of the core, it has 
been meshed with 3D linear tetra ele-
ments in order to adapt to the skin ge-
ometry: this has lead to an FE model 
having 17.000 nodes. The model was di-
vided into two parts: one zone where 
the thickness variation could be consid-
ered negligible, and a region where a 
high compression ratio of the core was 
evident.

Both these parts inherited the stiff-
ness equivalent macro characteristics, 
using the proposed methodology; the 
only difference was on the equivalent 
density given to these parts. For the nu-
merical/experimental validation, com-
parison the forced response computed 
with the FE model just described, with 
the spectra on two load floor samples 
are measured. These were suspended 
with rubber bands on the upper cor-
ners, acquiring the vibrations on one 
floor skin by means of a laser scanner 
on 221 points, Figure 5.

Figure 6 shows how well the proposed 
modelling can correlate to the measure-
ments. Despite the high geometrical and 
material complexity, the numerical mod-
el can find a pretty good agreement with 
measurements up to nearly 500/600 Hz. 
Only at higher frequencies does it seem 

Figure 3: Root mean square (RMS) of mobility comparison (validation model vs.  
homogenized model)

Figure 4: Detail of a trunk load floor section with honeycomb cores
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to lose its accuracy even though the 
trend of the experimental behaviour ap-
pears to be respected.

5  Outlook

The work of FE simulation done by Rieter 
in the past years has shown that the pro-
posed homogenization approach can be 
efficiently used. It is thus possible to pre-

dict the equivalent elastic tensor of hon-
eycomb cores with any general core con-
figurations.

The numerical approach has been 
validated using industrial finite ele-
ment software, onto several sandwich 
constructions having various core con-
figurations, with respect to static and 
dynamic analysis types. This simulation 
has shown a great accuracy, as well as 
direct implementation in the design 

phase of honeycomb sandwich car parts 
like for trunk load floor panels. It can 
seamlessly handle parts with variable 
core thickness and curved surfaces, re-
quiring a reduced FE meshing effort.

Moreover the honeycomb core solu-
tion can be changed either by varying 
parametrically the core shape or by 
changing the core material, without hav-
ing to re-mesh the FE component. There-
fore it can be applied in the design of 
honeycomb sandwich and in the identi-
fication process of efficient cellular core 
layouts with respect to NVH targets.
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Figure 6: Numerical/experimental comparison of root mean square (RMS) values for mobility 
velocity

Figure 5: Snapshot record with a laser scanner of a load floor deformation mode
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