
Parameter Identification 
for Transmission Housings 
FE Analysis of a  
Diecast Aluminum Alloy
In order to meet the increasing requirements in terms of the reliability of component simulations using the Finite 
Element Method, it is necessary to identify the material parameters of the material routine applied using several 
experiments with multi-axial stress states. This article describes a method for the identification of material 
 parameters for the simulation of elasto-plastic material behaviour in the FEM for transmission housings. The 
 method was developed further together with GM Powertrain Germany GmbH at the Chair for Applied Mechanics 
at the Technische Universität Kaiserslautern (Germany).
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1  Introduction

In lightweight designs, diecast alumi-
num components are increasingly being 
used. The diecast process leads, however, 
to a comparatively high number of 
microstructural imperfections. This has 
to be considered for the design of com-
plex components as, for instance, trans-
mission housings. Due to the high manu-
facturing costs for the experimental test-
ing of several geometry variations, com-
ponent simulations are increasingly be-
ing used to secure the design.

The Finite Element Method (FEM) as a 
widely used simulation technique in au-
tomotive engineering, however, is only 
capable of predicting the mechanical 
behaviour sufficiently accurately if an 
optimal set of associated material pa-
rameters is applied. A usual process is to 
calculate material parameters directly 
from tensile tests with homogeneous 
stress states on standard specimens. The 
parameters calculated in this way are, 
however, often not sufficient for simu-
lating the deformation behaviour of 
complex component geometries. In or-
der to be able to simulate multi-axial 
stress states precisely, it is necessary to 
identify the parameters for inhomoge-
neous displacement fields [2, 3]. There-
fore, a process, developed further by GM 
Powertrain Germany GmbH at the Chair 
for Applied Mechanics at the Technische 
Universität Kaiserslautern (Germany), is 
used.

Using image correlation photogram-
metry, specimens with defined inho-
mogeneous distributions of strains are 
measured contactlessly. The process 
presented in this article for generalised 
parameter identification [1] allows for 
the consideration of the occurring scat-
tering in repeat tests and the simulta-
neous consideration of many different 
measurement points for inhomogene-
ous displacement fields. The optimal 
set of material parameters of an elasto-
plastic material law in the FEM is calcu-
lated by minimising the sum of squared 
differences which compares the expe-
rimentally measured displacement da-
ta with simulated displacement data. 
The verification and validation show 
the very good applicability of the pre-
sented process for the diecast alumi-
num considered.

2  Experiment Preparation

The parameter identification is an opti-
misation problem with which sufficient-
ly accurate material parameters can only 
be identified if both the test program in 
combination with a suitable specimen 
geometry and the measurement method 
provide useful experimental data for the 
tested material.

For the considered diecast aluminum, 
a specimen geometry must be chosen 
which is as application oriented as pos-
sible to the components to be simulated 
in the following and which at the same 
time excludes as many production-relat-
ed differences in the material quality as 
possible. The occurrence of inclusions 
such as cavities, pores and micro-cracks, 
appearing generally in cast aluminum 
parts, depend strongly on the cooling 
rate and thus also on the wall thickness 
of the component. Therefore a specimen 
thickness similar to that of transmission 
housings was chosen. The slugs were pro-
duced by die-casting and have been re-
worked, Figure 1.

Since tensile stresses occur primarily 
in the component ‚transmission hous-
ing‘ and since it is known that cast mate-
rials bear considerably higher stresses 
under pressure than under tension, ten-
sile tests are conducted for the following 
parameter identification. As mentioned 
above, the informational value of meas-
ured data of inhomogeneous displace-
ment fields is generally much higher 
than that of homogeneous displacement 
fields, as they are measured on standard 
specimens. The inhomogeneity of the 
state of stress in the applied specimens is 
induced specifically by a hole with a di-
ameter of 3 mm. Thereby, the location of 
the necking is defined as well. For the 
given requirements, the measurement 
system has to measure the very small dis-
placements with sufficient accuracy on 
the one hand. On the other hand, the 
measurement should be conducted with 
an sufficient number of measurement 
points in the vicinity of the hole. There-
by, it can be assured that the localized 
and inhomogeneously distributed defor-
mations in this area can be measured as 
fully as possible. A measurement system 
which is very suitable for these require-
ments is the image correlation photo-
grammetry, in which a black and white 
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Figure 1: Specimen with stochastic pattern

Figure 2: FEM model

stochastic pattern is applied onto the 
considered area on the specimen surface, 
Figure 1. For the measurement of the 
two-dimensional displacement data, a 
CCD camera tracks the pattern during 
the test, whereby images of the pattern 
are recorded at different load stages. Af-
ter the test, the displacement fields are 
calculated using a photogrammetric 
evaluation procedure (for a detailed de-
scription of this measurement method, 
see for example [4]).

3  Constitutive Law

The mechanical behaviour of the consid-
ered cast aluminum alloy is simulated 
with ‚von Mises plasticity‘ with isotropic 
hardening and associated flow rule. For 
a detailed description of the constitutive 
law, see for example [5]. In this formula-
tion, plastic flowing occurs if the second 
invariant Jdev 

2    =   1 __ 2  ||σ dev||2 of the deviatoric 
part σ dev of the Cauchy stress tensor 
reaches the value   1 __ 3   h2, thus the flow 
function yields Φ =||σ dev|| –  

 
 √
____

 2/3h  . The 
hardening law is defined by h = y0 + H α + 
[y 8 – y0] [1 – exp (– ωα )] with the strain-
like internal variable α . The set of mate-
rial parameters for the employed mate-
rial law is given by κ = [E, v, y0, y 8 , ω, H]. 
Thereby, E is the elasticity modulus, v the 
Poisson‘s ratio, H the linear hardening 
modulus, ω the exponential hardening 
modulus, y0 the initial yield limit and y 8  
the saturated yield limit.

In ‘von Mises plasticity‘, the three-di-
mensional stress state is compared with 
the one-dimensional yield stress h on the 
basis of the one-dimensional equivalent 
stress σe

 =  
 
 √
___

 3/2  ||σ dev||. Since measure-
ment data of inhomogeneous displace-
ment fields and therefore multiaxial 
states of stress is employed for the follow-
ing parameter identification, the appli-
cability of the ‘von Mises plasticity‘ is 

checked for the simulation of the consid-
ered cast material.

4  Experiments

The experiments were conducted at 
room temperature. In order to avoid tem-
perature effects due to the lighting of 
the specimens, two cold lights (Dedocool, 
250 W Quartz Halogen ELC Type) were 
used. The CCD camera (Vosskühler 1300, 
resolution 1024 x 1280 pixels) with 
50 mm lens (Schneider Kreuznach) is po-
sitioned vertically to the direction of 
movement in front of the specimen. The 
two-dimensional displacement fields are 
computed using the photogrammetric 
software Aramis.

Measured data from several experi-
ments are used for the parameter identi-
fication of the cast aluminum alloy. For 
example, the procedure is represented 
using three specimens P83, P84, and P85 
in three different tests: A (P83), B (P84) 
and C (P85). 

In order to differentiate between the 
purely elastic and elasto-plastic parts of 

the deformation for the following identi-
fication, a test program with an (elastic) 
unloading is chosen for all tests. The tests 
are conducted in force control with a rate 
of 45 N/s up to a maximum force of 
9000 N (maximum tensile stress per 
square unit of original cross section: 
200 MPa). Then the specimens are un-
loaded with a rate of –45 N/s to 0 N. Every 
5 s an image of the specimen is taken 
with the CCD for the displacement meas-
urement (total number of 80 pictures per 
specimen). The total time for each test is 
320 s. The experimental results are the 
force-time curves, whereby F represents 
the total force in the loading direction 
and the two-dimensional displacements 
of the measurement points in longitudi-
nal (x) and transverse direction (y) on the 
area of the specimen‘s surface consid-
ered. It must be noted that the displace-
ment data of the measurement points 
are relatively imprecise directly on the 
edge of the hole. These measurement 
points are discarded for the following pa-
rameter identification. Furthermore, sig-
nificant measurement noise occurs in 
the experiments, which results from the 

REsEARch

ATZ 03I2008 Volume 11048 

Calculation and Simulation



Figure 3: Interpolation of the measures displacements on the selected identification nodes 
for the specimen P83

very small displacements in conjunction 
with unavoidable uncertainties in the 
force control and the optic measurement 
technique.

The experimental data were calculated 
by M. Bosseler at the Institute of Resource 
centred Product Development under the 
supervision of Prof. Dr.-Ing. R. Renz, Tech-
nische Universität Kaiserslautern.

5  Parameter Identification

In the following interpolation of the ex-
perimental data, parameter identifica-
tion for relative displacements and pa-
rameter identification for the combina-
tion of three tests are described in detail.

5.1  Interpolation of the  
Experimental Data
For the parameter identification, effects 
such as the slipping in the clamping and 
the influence of the stiffness of the test-
ing machine have to be excluded. There-
fore, the measured and simulated dis-
placements are calculated relative to an 
identification node within the identifica-

tion algorithm. Hereby, the measurement 
of the displacement field can be restrict-
ed to a section of the specimen. Further-
more, the FE model has to be discretised 
lengthways only until an approximately 
homogeneous stress state can be assumed 
at a sufficient distance to the hole. This 
procedure allows an equivalent force 
transmission in the FE simulation in 
analogy to the experiment. For the simu-
lation of the tests, an FE discretisation of 
the specimen with 1500 eight-node en-
hanced elements (Q1E9) is used. Because 
of the symmetry of the geometry of the 
specimens, only half the width, half the 
length and half the thickness is discre-
tised, Figure 2. In addition to the symme-
try conditions, the boundary conditions 
for both ending planes normal to the lon-
gitudinal direction are chosen in corre-
spondence with the experiments.

Since the coordinates of the measure-
ment points generally do not coincide 
with the coordinates of the identifica-
tion nodes, the measured displacements 
are interpolated on the identification 
nodes. In order to make tests A (P83), B 
(P84) and C (P85) comparable, identical 

identification nodes are chosen for all 
three tests. Taking specimen P83 as an 
example, Figure 3 shows the interpolation 
of the measured displacements to the se-
lected identification nodes.

5.2  Parameter Identification  
for Relative Displacements
In order to minimise the discrepancies 
between the measured and simulated 
data, an objective function, the least 
squares problem, is defined. For each 
load step j and for all identification nodes 
i, the differences of the displacements to 
the identification node lrel are formed (for 
Irel let i = ir). Therefore, at load step j the 
relative displacements for the FE calcula-
tion are u–ir j (κ ) – u–ij (κ ), and for the inter-
polated measured displacement they are   
u–exp 

ir j  – u–exp 
ij   . Thus the following least-squares 

approach is applied for parameter identi-
fication for a single test:

f (κ ) =

  1 __ 2   Σ 
T 

i=l
 Σ 

N 

j=l 
 [ [u–ir j (κ ) – u–ij (κ )] – [u–exp 

ir j  – u–exp 
ij  ] ] 2 Eq. (1)

5.3  Parameter Identification  
for the Combination of Three Tests
As described above, the casting process 
leads to inevitable material inhomoge-
neities and thus to scattering of experi-
mental data which has to be considered. 
The following approach allows identifi-
cation with which a non-linear averaging 
of the single parameter set κ is deter-
mined using measurement data of three 
experiments: Analogously to equation 
(1), the objective function with displace-
ments relative to the identification node 
Irel is formed, Figure 2 (RN). Tests A (P83), 
B (P84) and C (P85) are considered simul-
taneously within the iteration algo-
rithm:

fABC (κ ) = Eq. (2)

  1 __ 2   Σ 
Ng 

i=l 
  ( Σ 

T
A 

j=l 
 [ [u–irj

 (κ ) – u–ij (κ )] – [u–exp 
ir j  – u–exp 

ij  ] ] 2 

             {
                                      A(P83)

+       Σ 
T

B  

k=l 
 [ [u–ir k (κ ) – u–ik (κ )] – [u–exp 

ir k  – u–exp 
ik  ] ] 2

    
      {

                                      B(P84)

+       Σ 
T

C  

l=l 
 [ [u–ir l (κ ) – u–il (κ )] – [u–exp 

ir l  – u–exp 
il  ] ] 2 ) .

        

{

                                      C(P85)
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Figure 4: Verification

Figure 5: Verification for test C (P85) for load step 40; the displacements have been scaled by 
a factor of 20 for this representation

All three tests have an equal number of 
load steps TA = TB = TC = 80 and equal 
numbers of identification nodes Ng = 
159. The simulation of the displacement 
fields u–ij (κ ),u–ik (κ ) and u–il (κ ) of the three 
tests the FEM simulation is force control-
led with the measured forces of the as-
sociated real experiments (see section 4). 
The aforementioned least squares prob-
lem is solved using the Levenberg-Mar-
quardt optimisation algorithm, whereby 
a (local) minimum of the objective func-
tion is sought for different start param-
eter sets. The smallest of all tested (local) 
minima is κ  = κ ImABC.

It must be noted that the number of 
terms in the least squares sum totals 
76,320 per iteration step of the optimisa-
tion algorithm: In the objective function, 
for 159 identification nodes for three 
tests each with 80 load steps, the meas-
ured and simulated displacements go in 
two directions.

6  Verification and Validation

In the following the topics verification 
and validation, as a final step, are dis-
cussed more in detail.

6.1  Verification
In the verification, the simulated data – 
calculated as based on the identified pa-
rameter set κ  = κ ImABC – are compared 
with the experimental data. In diagrams 
in Figure 4, the force is represented versus 
the relative displacements for the tests A 
(P83), B (P84) and C (P85), whereby the 
curves shown each refer to the identifica-
tion nodes 1 - 5 marked in Figure 2. Ux 
and Uy are the relative displacements in 
longitudinal and transverse direction. 
Figure 5 shows the verification for all 
identification nodes for test C at load 
step 40. For a clearer representation, the 
interpolated experimental and simulat-
ed displacements have been scaled here 
by a factor of 20.

The verifications show that the mate-
rial law is suitable for simulating the me-
chanical behaviour of the considered 
cast material sufficiently precisely in 
terms of quality and quantity. The calcu-
lated inhomogeneous displacements in 
the vicinity of the hole, which result 
from the multi-axial stress state, are in 
good agreement with the respective ex-
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f ABc (κ lmABc
) [mm2] f A (κ lmA

) [mm2] f B (κ lmB
) [mm2] f c (κ lmc

) [mm2]

0.0530473 0.0121345 0.0154719 0.00753172

Table: Comparison of the sum of squared differences f for the solutions of the individual  
identifications (κlmA, κlmB, κlmC

) and the combined identification (κlmABC
)

Figure 6: Validation

perimentally determined displacements. 
Furthermore, it can be observed that the 
local minimisation of the least squares 
functional provides a parameter set 
which enables to fit the simulations to 
the respective experiments in an average 
way. Thus this procedure is suitable for 
considering the scattering of experimen-
tal data.

For the three tests A, B and C, individ-
ual parameter identifications were per-
formed which yield the parameter sets κ 
= κ ImA, κ  = κ ImB and κ  = κ ImC, respectively. 
As expected, since the parameters did 
not have to be averaged for three tests, a 
better agreement between experimen-
tally determined and simulated displace-
ments can be observed here. The Table 
shows the comparison of the sum of 
squared differences for the respective 
identifications. The parameter set κ  = 
κ ImABC calculated for all three tests results 
in an average sum of squared differences 
of øcomb    

ABC = fABC (κ ImABC)/3 = 0.0176824 mm2 
per test. The average sum of squared dif-
ferences for the individual identifica-
tions yields øind    

ABC = [ fA (κ ImA) + f B (κ ImB) + f C 
(κ ImC)/3 = 0.0117127 mm2. Thus there is 

an average reduction in the sum of 
squared differences between the individ-
ual and combined parameter identifica-
tion of Δ f = 100 [øcomb     

ABC –  
øind   

ABC]/ øcomb    
ABC   = 66,24 %.

6.2  Validation
As a final step, the identified parameter 
set κ  = κ ImABC is validated. The experi-
mental data applied for validation and 
for parameter identification must be in-
dependent from each other. In order to 
fulfil this requirement, additional ten-
sile tests are conducted on specimens, 
which differ in terms of geometry from 
the specimens used for parameter identi-
fication. Therefore specimens without a 
hole are employed, Figure 1. In an ideal-
ised homogeneous material, this geome-
try under tensile load would induce an 
almost homogeneous stress state in the 
area of the measured field. The scatter-
ing of strains in the longitudinal direc-
tion εxx for different measurement points 
as a result of the material inhomogenei-
ties of the examined cast aluminum are 
averaged for the validation, Figure 6. A 
good agreement can be found between 

the stress-stretch curves measured and 
simulated using the parameter set κ  = 
κ ImABC.

7  Summary

The Finite Element Method can only pre-
dict the mechanical behaviour of compo-
nents accurately if a suitable constitutive 
law is applied and the associated materi-
al parameters are known for the consid-
ered material. In this work by GM Power-
train Germany GmbH and Chair for Ap-
plied Mechanics at the Technische Uni-
versität Kaiserslautern (Germany), the 
material parameters of ‘von Mises plas-
ticity‘ have been identified for a cast alu-
minium using inhomogeneous displace-
ment fields, whereby the data from sev-
eral tests were applied. By means of veri-
fication and validation, a very good 
agreement of tests and simulation could 
be proven for the transmission housing.

As a result, various current uncertain-
ties could be resolved: On the one hand, 
it has been shown that the ‘von Mises 
plasticity‘ can simulate multi-axial stress 
states for this material sufficiently pre-
cisely despite using the one-dimensional 
equivalent stress and hardening within 
the flow rule. On the other hand it be-
came obvious that the method used can 
average the material parameters non-lin-
early for several tests. Both aspects lead 
to a considerable improvement of the re-
liability of the parameter set and there-
fore also of the simulation of complex 
components  made of this cast alumini-
um alloy.
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