
Driving Situation and Driving 
Style Dependent Charging Strategy 
in Hybrid Electric Vehicles
Adaptive and situation-dependent charging strategies of batteries in hybrid electric vehicles 
aim to resolve the conflict between high efficiency and optimal driving performance. By using 
inputs from devices such as navigation system, radar and camera, as well as from standard 
sensors, driving situations challenging the electrical energy storage device are identified and 
predicted in real time, onboard the vehicle. BMW provides an overview of energy potentials of 
such adaptive energy functions and presents a method for driving situation classification using 
fuzzy probabilistic networks.

1 Full hybrid two-mode active transmission, 2 Power and control electronics, 
3 High performance battery, 4 Highly efficient combustion engine
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1  Introduction

Due to the relatively low energy density of 
electrical energy storage devices, the con-
trol strategy of hybrid electric vehicles has 
to fulfil a variety of requirements in order 
to provide both, the availability of hybrid 
functions, and their efficient execution. 
Energy consuming functions such as elec-
tric drive or electric boost need a very high 
amount of energy stored in the battery. 
On the other hand, for the optimal use of 
the energy regeneration a lower state of 
charge is preferable in order to enable 
storage of the kinetic energy of the vehicle 
in all situations, including upon decelera-
tion from high speeds or downhill driv-
ing. These diverging requirements yield a 
conflict of objectives for the charging 
strategy of hybrid electric vehicles. Figure 1 
shows driving performance measure-
ments of a mild hybrid vehicle marketed 
today. Depending on the state of charge of 
the traction battery the time needed for 
acceleration from 0 to 100 km/h varies 
dramatically. 

BMW proposes a way to overcome the 
restrictions on driving performance in hy-
brid electric vehicles without deteriorat-
ing overall efficiency. By setting a higher 
average state of charge only when it is 
needed – for example during overtaking 
manoeuvres, dynamic driving style, etc. – 

the availability of the boost function can 
be increased significantly. On the other 
hand adaptive charging strategies allow 
lower states of charge whenever wide 
open throttle acceleration manoeuvres 
are not likely to happen, leading to better 
use of stored energy for electric drive and 
higher efficiency.

2  State of the Art

2.1  Charging Control Strategies
Up to now a large variety of methods for 
controlling the state of charge of trac-
tion batteries in hybrid electric vehicles 
has been published. Online optimiza-
tion algorithms are a main field of re-
search, most of them not including in-
formation about forthcoming driving 
situations. Their real time capability 
has been proven at least once [1, 4]. But 
from the point of view of the automo-
tive industry their compatibility with 
the established development processes 
seems to be noticeably lacking. Until 
the production stage, all functions con-
trolling the drive chain of a vehicle have 
to go through several stages of develop-
ment in various departments. The suit-
ability of new energy functions for a 
hybrid drive chain to a complex and 
long development process including 
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Figure 1: State of charge dependent performance of a mild hybrid
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vast numbers of developers over many 
years is a constricting requirement.

The following analysis is based upon a 
conventional charging strategy for paral-
lel hybrid electric vehicles that seems to 
be compatible with the development 
processes due to its comprehensible pa-
rameterization. Figure 2 shows the basic 
characteristics: Whenever the vehicle is 
not in one of the states “energy regenera-
tion”, “electric drive”, or “boost” the 

charging strategy controls the electric 
battery power and with it a delta of the 
torque of the combustion engine and 
electric motor respectively.

The charging strategy defines the bat-
tery power depending on the current ve-
hicle speed and SOC (State of Charge) . By 
doing so, it ensures both a minimum 
SOC for boost and electric drive availabil-
ity and a maximum SOC for the regener-
ation of kinetic energy especially at high 

speeds. Whenever the system state is in 
the remaining white area, there is no 
need for charging or discharging the bat-
tery and the SOC solely depends on the 
characteristics of the driving profile. In 
case of an SOC at the upper boundary of 
the white area with a soft acceleration 
phase following, the charging strategy 
will lower the SOC along the dotted line 
by assisting the combustion engine with 
electric power. The remaining states of 
operation and their consequences for the 
SOC are indicated by black arrows in Fig-
ure 2. Whenever extensive electric drive 
reduces the SOC to a certain low limit, 
the combustion engine is started and the 
control strategy requests medium charg-
ing power until the lower boundary of 
the white area is reached and new energy 
for electric drive is available again. 

Due to a lack of information about cur-
rent and future driving situations this 
charging strategy is a compromise be-
tween the availability of boost and electric 
drive on one side and energy regeneration 
capability on the other side. After repeti-
tive WOT (Wide open throttle) accelera-
tion manoeuvres or through extensive 
electric drive the SOC can reach a level 
where no further driving assistance by 
the electric motor is possible. This may 
lead to severe restrictions on driving per-
formance, customer acceptance and driv-
ing safety. General prioritization of driv-
ing performance with a higher average 
SOC is not an option since this would re-
sult in low overall efficiency. 

2.2  Modern Driver Assistance  
Systems and Sensors
The reliable detection of different driv-
ing situations, where priority to either 
performance or efficiency should be giv-
en, is a prerequisite for allowing the con-
trol strategy to diverge from the de-
scribed compromise. Modern driver as-
sistance systems together with standard 
sensors provide a variety of information 
about the environment of the vehicle in 
order to detect such driving situations 
predictively [1, 7, 8]. The new generation 
of navigation systems is already capable 
of sending bus signals with information 
regarding the current and coming situa-
tion on the road. The ADAS protocol (Ad-
vanced Driver Assist System) for naviga-
tion control units contains information 
about the category, geometry and speed 

Figure 2: Conventional speed dependent charging strategy

Figure 4: Detection of forthcoming overtaking manoeuvres

Figure 3: Route estimation with ADAS-Protocol (Advanced Driver Assistance System-Protocol)
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limits of road segments that the driver is 
likely to follow. Figure 2 shows a map il-
lustrating the ADAS-based route estima-
tion. Depending on the road category 
and the angle of direction compared to 
the preceding road segment, every seg-
ment is ascribed an individual probabil-
ity that the vehicle will drive on it. The 
sequential combination of the most 
probable segments yields the MPP (Most 
Probable Path) whose length varies de-
pending on the number of crossings 
along the route. Recent message cata-
logues for CAN-bus systems already con-
tain signals describing the MPP with all 
its attributes allowing a sufficiently ac-
curate road prediction in a range be-
tween 1 km and 10 km. The MPP in 
Figure 3 also shows bright and dark sec-
tions which correlate with road seg-
ments with or without the possibility for 
an overtaking manoeuvre.

Further information about the vehicle’s 
surrounding situation can be taken from 
radar and camera systems. Coupled with 
light or rain sensors a grid of information 
can be set up that enables an assessment of 
probable driving situations in the immedi-
ate future. According to Figure 4 a high 
probability for a forthcoming overtaking 
manoeuvre can be computed if the MPP 
shows no curve, the radar sensor a low dis-
tance to the vehicle ahead, and if the cur-
rent driving speed is significantly lower 
than the prevailing speed limit [2]. 

3  Bayes Networks for the  
Classification of Driving Situations 

To obtain quantitative statements about 
the probability of future driving situa-
tions one needs a method for sensor data 
fusion. Since a car driver already has ex-
pert knowledge about the attributes of 
different driving situations, it would ap-
pear reasonable to use this knowledge 
within a mathematical network. Other 
than in neural networks [3, 6] the expert 
knowledge can also be directly represent-
ed by Bayes networks [5], whose inner 
structure is known. In this paper these 
networks are combined with correlation 
functions obtained from fuzzy logic 
methods. The signals xi are fed into the 
network and have been previously fil-
tered and merged in order to gain the 
relevant situation attributes yi. 

These attributes are then matched 
with predefined perceptions of situa-
tions or manoeuvres over a continuous 
degree of membership μy.= f(yi) analo-
gous to the membership functions 
known from fuzzy logic. Figuratively, an 
evidence measure regarding a certain 
situation is associated to the attribute 
value yi. The degrees of membership can 
be interpreted as virtual evidence and 
serve as inputs to a tree-like Bayes net-
work that computes the probability for a 
driving situation.

The detection of complex driving situa-
tions often requires cascaded networks. 
Situations with their probability can act as 
attributes of superior networks resulting 
in a multi-level structure. Figure 5 shows a 
Bayes network structure consisting of two 
cascaded sub-networks classifying the driv-
ing style and the probability for an overtak-
ing manoeuvre. The original bus signals 

are marked with “_raw” in the end and are 
then filtered and processed in order to 
serve as proper network inputs. 

3.1  Driving Style Identification
The current driving style is computed 
from moving averages of signals like 
throttle angle and speed, lateral accel-
eration, break pressure and steering an-
gle speed, while each signal xi is subject 
to a specific pre-processing method that 
only interprets signals as relevant under 
conditions (for example throttle angle 
only during accelerations, break pres-
sure only during deceleration, etc.). Fur-
ther signals appropriate for driving style 
identification are mentioned in [3], but 
in the case of a vehicle with automatic 
transmission, the throttle angle itself 
contains information about engine 
speed and acceleration since they are 
roughly proportional. 

Figure 6: Membership and time weight function for processed throttle angle signal 

Figure 5: Cascaded network structure for probabilistic detection of driving style and overtak-
ing situations
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Whenever a driver previously charac-
terized as dynamic starts to follow a car 
ahead and begins to show attributes of 
calm driving, parameters in the network 
are duly changed in a way that his driv-
ing style will nevertheless continue to be 
interpreted as dynamic. Additionally, in-
put-signals are weighted according to 
their age using a weight function σi(age). 
Figure 6 shows the membership and 
weight functions of the filtered moving 
average of the throttle angle: During ac-
celeration phases and with an average 
throttle angle of up to 30 % the attribute 
does not plead for dynamic driving style. 
The function output then increases line-
arly and reaches its maximum at a value 
of 65 % of average throttle angle. Accord-
ing to the time weight function on the 
right, the signals begin to lose their rele-
vance after 80s linearly.

The specified Bayes network for driv-
ing style identification achieves satisfac-
tory results. Figure 7 shows a section of 

measurements during which the driver 
had to evaluate his driving style by press-
ing buttons corresponding to the three 
main groups “dynamic”, “normal” and 
“relaxed”. The y-axis corresponds to the 
probability for dynamic driving (1 = 100 % 
dynamic). The discrete network output 
corresponding to the same three groups 
is showing only slight errors and correctly 
detects the driving style in more than 
90 % of the measurements. The priority 
has been given to a quick detection of dy-
namic driving while the detection of calm 
driving styles is accepted to be slower.

3.2  Detection of Overtaking Manoeuvres 
The network structure for the predictive 
detection of possible overtaking situa-
tions consists of six independent input 
variables (compare with Figure 4).

The variable representing the sur-
rounding environmental conditions is 
composed of data from light and rain 
sensors and is standardized with a two-

dimensional membership function: The 
probability for an overtaking manoeu-
vre is only significantly lower when 
heavy rain and darkness occur at the 
same time. 

The road geometry is represented by 
the quotient of the length of stretches on 
the estimated route where overtaking is 
possible and the total length of this 
route. During first tests in an experimen-
tal vehicle, the overtaking detection 
function shows very high detection rates. 
Only in dense or queued traffic there is 
the risk of false alarms: In these driving 
situations the network can compute high 
probabilities for an overtaking manoeu-
vre even though there is not a chance 
that it will happen in the near future. 
But the consequences of such errors are 
not severe as there will only be a request 
for a certain minimal SOC for the dura-
tion of the driving situation. Restrictions 
on efficiency coming along with this re-
quest are very limited in the hands of a 
customer.

3.3  Other Driving Situations with High 
Power Demand
Other driving situations demanding a 
high SOC for optimal power availability 
(entering a highway, exiting urban areas 
or driving uphill) are all detectible or 
predictable only through the use of the 
navigation system data along the MPP 
and do therefore not require a probabil-
istic sensor data fusion. But again, the 
most important prerequisite is a suffi-
ciently high probability for the occur-
rence of a specific situation. If the 
number of crossings between the vehicle 
and the beginning of the predicted driv-
ing situation is low, the assumption that 
the vehicle will actually follow the esti-
mated route is valid in most cases, as 
measurements in an experimental vehi-
cle have demonstrated.

4  Adaptive Charging Strategies

If one of the probabilistic networks or da-
ta along the MPP suggests a driving situa-
tion with high energy demand, the avail-
able energy in the storage device has to be 
compared to the amount of needed ener-
gy. In case of a lack of energy the proposed 
charging strategy of Figure 3 has to be ad-
justed in order to provide the needed 

Figure 7: Recorded and detected driving style

Figure 8: Charging control strategy for optimal performance
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amount of energy for the predicted full 
acceleration manoeuvre.

For the duration of a detected dynam-
ic driving style the control strategy is 
adapted as shown in Figure 8. Compared 
to the previous figure the white area of 
“no charging power” has been moved up-
wards at all speeds, resulting in less en-
ergy regeneration potential but greater 
boosting capability due to the higher av-
erage SOC. Once the driver shows a nor-
mal or calm driving style again, the 
charging strategy is set back to its origi-
nal operating status – the conflict of ob-
jectives between efficiency and perform-
ance is solved depending on the behav-
iour of the driver.

When driving situations are detected 
where the target speed can be estimated 
(overtaking, entering of a highway, etc.), 
the amount of stored energy required for 
full boost availability is computed based 
on a vehicle model. This amount of en-
ergy mainly depends on the vehicle 
speed at the start of the manoeuvre VStart 
and the speed difference VDelta the driver 
wants to obtain by accelerating. It can 
either be computed in offline simula-
tions or in real-time onboard the vehicle. 
During the operation of the vehicle the 
energy possibly needed according to the 
predicted situation and the available en-
ergy are continuously compared. If this 
comparison yields a lack of energy as in 
the SOC will be raised by the value and 
will not drop below afterwards. Figure 9 
shows the simulated amount of energy 
needed for various acceleration manoeu-
vres in a full hybrid vehicle. Additionally, 
areas with sufficient stored energy are 
marked brightly.

5  Simulation Results

For the evaluation of driving perform-
ance benefits, real driving cycles taken 
from measurements have been used 
with special focus on dynamic driving 
on the German autobahn. The resulting 
trajectories of the SOC were generated 
with a Matlab/Simulink vehicle model 
that had been validated for driving per-
formance issues. Using the static, con-
ventional charging strategy an average 
boost availability of 84 % was computed 
for an upper-class mild hybrid vehicle, 
that means during 16 % of the time, 

when the driver wished to get full pow-
er, the boosting function was not fully 
available.

With the specific charging strategy 
for dynamic driving the availability can 
be improved up to 100 % in most hybrid 
electric vehicles. Figure 11 shows plots of a 
driving cycle that was simulated, includ-
ing detailed views of the SOC and vehicle 
speed in a situation where a lack of 
stored energy occurs.

Moreover, the driving style classifica-
tion algorithm can be used to improve 
efficiency of full hybrid vehicles. Under 
the assumption that a calm driver needs 
less boosting potential, the charging 
strategy can allow electric drive down to 
lower states of charge. The widening of 

the electric drive potential results in a 
fuel saving potential of up to 4 % depend-
ing on the drive cycle.

The benefits of a predictive detection 
of likely overtaking manoeuvres are dis-
played in Figure 10. The vehicle shows a 
much more reliable behaviour with in-
creasing SOC due to the constant accel-
eration process. 

6  Conclusions

In order to cope with the conflict of ob-
jectives of energy management in hy-
brid electric vehicles, an adaptive charg-
ing strategy was proposed that seems to 
be compatible with the established de-

Figure 9: Needed electric energy for various WOT (Wide open throttle ) accelerations

Figure 10: Improvements in 
driving performance with 
adaptive charging strategy
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velopment processes in the automotive 
industry.

The strategy raises the state of charge 
of the electric energy storage device only 
when there is a significant probability for 
the need of high amounts of energy – for 
example during phases of dynamic driv-
ing style or according to special predicted 
driving situations. In all other cases a con-
ventional control strategy ensures high 
efficiency.

BMW proposed a method based on 
probabilistic networks for driving situa-
tion detection. Using predictive driver 

assistance systems as well as standard 
sensors, Bayes networks coupled with 
fuzzy membership functions were 
shown to be capable of providing quan-
titative information about the probabil-
ity of driving situations in the immedi-
ate future.

Simulation results show significant 
improvements in driving performance 
without deteriorating the overall efficien-
cy of hybrid electric vehicles. Adapting 
the charging strategy to calm drivers can 
even result in less fuel consumption. For 
optimization of energy regeneration and 

availability of the electric drive function, 
BMW is also analyzing specific charging 
strategies for slow driving areas, downhill 
driving and other driving situations.
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Figure 11: Driving performance during overtaking manoeuvres with varying SOC 

Development

ATZ 05I2008 Volume 11024 

Alternative Drives



AZ VVC 08 english .indd   1 03.03.2008   18:12:19


